TEMPERATURE DISTRIBUTION IN A CIRCULATION GAS LENS
WITH CONSIDERATION OF GRAVITY FORCES

F. E. Gertsenshtein UDC 535.31:532.542

We solve the differential equation for the temperature distribution function in a focusing tube
of a circulation gas lens. We have derived an expression for the temperature distribution
with congideration of gravity forces in the form of an expansion in Whittaker functions in a
tube with infinite and finite thermal conductivity for the wall materials.

In studying thermal gas lenses we note that the law governing temperature distribution serves as the
primary basis for the analysis of properties in this type of lens. Knowledge of this law makes it possible
rather easily to make the transition from the temperature distribution to the distribution of the refractive
index of the gas medium in the lens and, consequently, to investigate the electrodynamic characteristics of
the lens. Reference [1] gives the law for the temperature distribution in a thermal gas lens without consid~
eration of the mass forces, It was pointed out in [2-4], however, that the presence of gravity forces exert
significant influence on the operation of the lens inlightguides, Consideration of the effects exerted by mass
forces on the temperature distribution in a thermal gas lens will make it possible more completely to study
its properties and to answer the question as to the possible ways of using lenses of this type. Let us ex-
amine the circulation gas lens (Fig. 1) proposed by Berreman, whose principle of operation is described
in [4]. All of the physical processes in such a lens stand out quite clearly and can be described by rather
simple mathematical means. At the same time, the derived results are easily extended to other types of
thermal gas lenses., The process within the lens is regarded as steady.

A differential equation was derived in [4] for the temperature distribution function, with consideration
given to gravitation within the focusing tube of the circulation gas lens, Here it was assumed that the gas
flow remains laminar in the focusing portion of the lens (in the segment EF-CD). However, unlike the axi-
symmetric case, the gas moves as a result of the head which is a function of the coordinates r and ¢ (Fig.
2). It is assumed that the gas density is constant in each of the branches A'B' and AB and that it equals o4
and p,, respectively, while the pressure in each of these branches is determined by the expression
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where Py is the pressure of the outside air,
Let us introduce the auxiliary quantity T o
Tylr, 9, ) =Ty —T(r, 9, 2). {2)
We will assume that the change in temperature in the axial direction — in comparison with its change
in the transverse direction — is so small that we can assume
T
ozt

=0. (3)

Having introduced the dimensionless coordinates 1, ¢, ¢ and taking into consideration (2) and (3), we
present the differential equation derived in [4] for the temperature distribution in the form
0T I o7, 1 9T oT
B — 28— T8 _K(l—bmncoso)(l—n? 218
o T on + g (1 —bgn cos @) (I—1?) Fa (4)
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Fig. 1, Diagram of a circulation gas lens.

where K is a dimensionless constant by means of which we take into consideration the physical and geomet-
rical parameters of the lens, with expression (1) written in the form

P = Py + gph, (1— byn cos ¢). 1)

With consideration of (1') we determine the temperature distribution in the branch A'B' (for £ = 0) from the
Clapeyron equation by the expression

Tylt=y = (AT — 8T) + 8Tbyn cos @, (5)

where AT = Ty, — T, 6T = ghy/R is expressed in units of temperature,

M

We will subsequently examine a semiinfinite circular cylindrical tube (Fig, 2a). It is obvious that the
gas temperature in such a tube may not be lower than T, and when heated it may attain its maximum pos-
sible magnitude of Tp;. In this case (5) will be a boundary condition when ¢ = 0, while for the boundary con-
dition at infinity, with consideration of (2), we have

Tgle o =0 (6)

Lroo

In the place of a real bounded structure we can introduce a semiinfinite structure into our considera-
tion if we assume that the length I of the segments in the focusing tube has been chosen sufficiently large to
assume the gas temperature in the cross section CD to be constant and equal to the temperature Ty of the
metal coating, The gas temperature in each lateral cross section of such a tube must satisfy the condition
of periodicity in relation to the coordinate ¢, i.e.,

Ty, o O =Tgl, ¢ +2%, 0 )

and, since the force of gravity is constant in the vertical direction, it must satisfy the condition of symmetry
with respect to the vertical diameter:

Tg(, ¢, 0 =Tg(n, 2n—9, L) (8)
Since the temperature TM of the tube wall is constant, it follows from (2) that
Tglns = 0. )

On the tube axis (when 7 = 0) the gas temperature must be finite
Tgln—o < @ (10)

and it must be independent of the angular coordinate ¢. The solution of (4) is sought in the form
Tg:exp(—K£ Z) tm, @) (11)

Presenting the function t(n, ¢) in the form of the series

@

tn, ) = 2 bER,, () cos ng,

n==0

(12)

substituting (11) and (12) into (4), equating the terms that are identical functions of the angular coordinates,
considering that by < 1, and neglecting the terms containing b, in powers of two and higher, we turn to the
examination of the process with respect exclusively to the single radial coordinate, which enables us to sim-
plify the comparison of the results from this paper with those derived earlier.

828



0
rM

YILLIININISLLLL . SIIIS
R~

]

Fig. 2. Focusing tube of a circulation gas lens with infinite (a)
and finite (b) thermal conductivity.

As was to be expected, in the case under consideration the zeroth approximation described by the
equation
o>
LR Lot — ) R =0 13
dn? dn
coincides exactly with the equation for the temperature distribution, without consideration of gravitation
(see, for example, [1]). The effect of gravitation is taken into consideration by means of the functions
R, > 0), which are solutions of the nonuniform differential equation
d? d
R, - R,
dn? dn

tma—m =R, =B e~ R, (14)
M 2

and which are functions of the zero function. According to (9) and (10), we can write the boundary condi-
tions for (13) and (14):

Rin=1=0 (n=0,1,2 .., (15)
ROI“=0< ©, (16)
Rin=o=0 (n=1,2 ... (17)

It is easy to demonstrate that the solution of the boundary-value problem (13), (15), and (16) is written
in the form of a series in Whittaker functions [5]

R, “Ecm°f’"° V o Myg (1 B (18)

m‘O
where the eigenvalues of By, ¢, determined from (15), are the roots of the equation
Mygao i B) =0, (19)

while the eigenfunctions fm,y, which correspond to the various eigenvalues, will be orthogonal in the interval
[0, 1], and namely:

! 0,k+1,
(1"1 (0 =) Frofiodn = ( o Ofm.o ) , k=1l=m (20)
5 OBm,o I Jr=

We can use the method of varying constants to solve the boundary-value problem (14), (15), and 7). In
this case [5],

— 001 =<j Bm,n IIR ‘Ll__‘lR d_i__R;l , 1R;;21__2 d 21
Rn 2‘ Rm,n (ﬁm,n,ﬂ) nﬁ.{.}‘ 20) (ﬁm'n) [Rn ﬁm n E} Al ( T]) n-t 41 (ﬁm,n n)é‘ i ( n )Rn-i 7]] ’ ( )

m=0

where

, 1 e
Rn == /VIVE'—' n n (_VBm.nnz)’
M m, s, g
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is a function that is independent of the radial coordlnate, while the values of By, ,; are roots of the equation

1

[Ru B, Mn* (1 —n?) R, _ydn =0. (22)

0
Thus, if we know the zero solution of the problem, we can find the complete solution of the problem, To
derive the temperature-distribution law applicable to a gaseous medium in its final form, it is a good idea
to orthogonalize the function Rm n» Which is permisgsible since series (21) is a sequence of linearly inde-
pendent functions and the temperature distribution should be presented in the form of expansion in orthog-
onal functions fm,n, determined correct to the sign by the formula {6]

—1

2 fan SRm nfn,ndn

frn = — - (23)

{ g [Run =3 o Rm,nfh,ndnr an)”

k=0

Assuming the orthogonalization process to have been completed, utilizing the conditions of orthogonality for
the trigonometric functions and the functions fy n 0 =0,1,2,...), as well as boundary condition (5), we

finally obtain
)3

. o [
= @7 —81) 3 exp (Pt ] e s (B
e )
1
o jnfm,idn
+6T6, $Y exp (—Pmt g} 2 Frt (Bnto 1) €O Q. (24)
K
m=0 S t?n,ldﬂ

&3

In certain cases, from purely technological considerations, it is more convenient to fabricate the circulation
gas lens from a glass tube whose outside surface — with the exception of the insulated "windows" — is metal
coated, In this case, between the heated metal tube which exhibits a constant temperature Ty, and the gas
flow we have a glass spacer which is made of a material that exhibits a comparatively low coefficient of
thermal conductivity. A unique temperature distribution is established within the glass, and this must be
taken into consideration in analyzing the temperature regime within the gas. Even in this case we will as-
sume the operational regime for the lens to be such that its focusing point can be replaced by a semiinfinite
tube (Fig, 2b). The difference from the problem considered above lies in the variation in the boundary con-
ditions at the wall of the tube. In analogy with (2), if the temperature in the glass is introduced by means

of the relationship

T @ D=Tg—TM, 9 &) ")

in the steady-state regime condition (9) must be replaced by the condition at the glass—metal boundary, i.e,,

Tat|, pery =0 (25)
and the conditions at the gas— glass boundary
7(%1]11:1 = Tgln:ly (26)
e Te | py-Ts 27)
M o=t o |n=1
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Relationships (5)-(8) and (10) remain valid even in this case, while for the glass it becomes necessary to in-
troduce yet another condition which for the gas is identical to (6), i.e.,

Tl >0 6"

Condition (6') corresponds to the practically utilized case of leveling out the temperature in the central
branch AB of the lens [7]. The length of the focusing tube at which this is possible is, of course, increased
in comparison with metal tubes, of which more will be said in detail later on,

We know [8] that in the steady-state regime the temperature distribution in the glass is described by
the Laplace equation, i.e,,
2. 2 2
Fly , 0Ty 1 oy 1 Ty 8)
og* om* om0 n* o

whose solution, with consideration of (7), (8), and (6"), will be

o

Tu= ¥ exp(— 2 [Caly (vn) +CaN (v)] cos ng. (29)
n=0
The temperature distribution within the gas, as above, is described by Eq. (4). Consequently, in this case
the form of the zero solution (18) is retained, as well as that of the additional solution (21) for the radial
function, However, unlike the above, the eigenvalues of the boundary-value problem under consideration are found
as roots of the determinant:

{Jo (—I%)“qo 0(%) —Ry(v, D) ,
1 \ iR $: 0 (30)
X NN (Y - 0 |
K xgl[J‘)( ) q°N0<K)] e dn [g=r |
for the zero solution and
| K K ~0 (31)
Y Y : l)J dR,
l?"gl[J (7)_"“"’”(K M " fyes |
for the additional solution, where
Jn(%« b)
Gn =
N,,(l b)
K

In this case the functions Ry(Yyy, ¢, ) no longer corresponds to the orthogonality condition (20).

Therefore, in order to derive a final expression for the temperature~distribution function, on the
basis of the radial functions Ry, (n =0, 1,...) we have to construct a system of orthogonal functions ¢m,n
{Ym,n> M), using (23), and we have to write the sought solution with consideration of (5) in the form of series
in functions of zl’m,n» Having carried out this process, for the temperature distribution in the gas we find

i

I =1 o

Ty = (AT —8T) Z exp (— V[”é"’ ) : P 0 (Y00 M)
=0 \ ‘P?n,odn
0
.
_ M,
+5Tbo}: exp (_ Y'}'('i Q) OJ; Y.t (Ym0, M) COS . (32)
m=0 ‘ ‘ ‘Pf,l_ldﬂ

0
Thus, unlike the axisymmetric case in which gravity forces are not taken into consideration [7], in
this case we note disruption of symmetry for the temperature distribution relative to the axis of the focusing
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tube of the lens. In analogy with [7], if we assume the minimum absolute temperature to be the axial (in

the optical sense) value for the temperature at each cross section of the tube, as we can see from (24) the
effect of gravitation leads to a shifting of the optical lens axis relative to its geometric axis, and this dis~
placement varies as a function of the axial coordinate, Moreover, the fact that the temperature-distribution
function contains a term with a cosinusoidal function of the amplitude coordinate ¢, which represents anin-
finite series in odd powers of the radial coordinate, indicates the different temperature distributions in the
upper and lower halves of the focusing tube, and in the final analysis this must result in the appearance of
odd aberrations in the image of the light spot.

The effect of the glass is manifested primarily in the magnitude of the eigenvalues of ¥y, . which will
be smaller than the corresponding values of Sy, n and they will be functions of the thermal conductivity of
the spacer material and of the type of gas. This characterizes a slower rate of increase for the tempera-
ture in the gas. Knowing the quantity Yy, pn and ﬁm,n makes it possible to correct the length of the focusing
segments of a lens with and without glass, these lengths being those at which it is possible to make the tran-
sition to an examination of a semiinfinite structure, It is obvious that in this case the focusing effect of the
lenses will be identical for both designs, since that effect is characterized by the temperature differences
across the length of the focusing tube.

However, generally speaking, there is an exponential variation in the temperature at the gas—glass
boundary. Appropriate choice for the thickness of the glass spacer can make this law differ little from the
linear. In this case the resultsfrom [9] are applicable to such a structure with a high degree of accuracy,
i.e., with a glass tube placed between the heated metal and the laminar gas flow it becomes possible to alter
the characteristics of the optical bundle.

The numerical processing of these results is possible with the aid of an electronic digital computer.

As was pointed out in [4], the effect of gravitation can be reduced by lowering the ratio of the light~-
beam radius to the radius of the focusing tube, From these solutions we see that the gravitation effect can
also be controlled by means of the parameter by, i.e., by perfecting the design of the lens,

If it becomes necessary to take into consideration the gravity forces and to perform thermal-engineer-
ing calculations, these results can be extended to other systems by selecting an analog for the parameter by,

NOTATION
n = r/a is the dimensionless radial coordinate;
¢ =zla is the dimensionless axial coordinate;
Tm is the temperature of the wall of the focusing tube;
Ty is the temperature of the ambient medium;
g is the acceleration of free fall;
by = a/hy, where h, is the height of the lens;
K= 2wch/7ra7xg is a dimensionless constant;
w is the volumetric gas flow rate through the focusing tube;
Cp is the heat capacity of the gas constant pressure;
P is the gas density;
R is the universal gas constant;
Jand N are Bessel and Neumann functions;
A g and Agl are the thermal conductivities of the gas and the glass, respectively.
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